Performance Optimization
Use tracing data to identify bottlenecks and optimize AI application performance
Performance optimization for AI applications requires understanding the unique characteristics of LLM calls, vector operations, and complex workflows. Noveum.ai's tracing data provides detailed insights to identify bottlenecks, optimize resource usage, and improve overall system performance.
🎯 Why AI Performance Optimization Matters
AI applications have unique performance characteristics:
- Token-Based Costs: LLM usage is measured in tokens, making efficiency crucial
- Variable Latency: AI operations can have unpredictable response times
- Context Dependencies: Performance varies with input size and complexity
- Resource Intensive: Vector operations and embeddings require significant compute
- Cascading Effects: Slow AI components impact entire application workflows
📊 Performance Analysis with Tracing Data
Identifying Performance Bottlenecks
import noveum_trace
import time
import numpy as np
from typing import Dict, List
class PerformanceAnalyzer:
"""Analyze performance patterns from tracing data."""
def __init__(self):
self.performance_metrics = {}
self.bottleneck_thresholds = {
"llm_latency": 5.0, # 5 seconds
"embedding_latency": 2.0, # 2 seconds
"retrieval_latency": 1.0, # 1 second
"memory_usage": 1000, # 1GB
"token_efficiency": 0.5 # 50% efficiency
}
@noveum_trace.trace_analysis(analysis_type="performance_bottleneck")
def analyze_operation_performance(self, operation_data: Dict) -> Dict:
"""Analyze performance bottlenecks in AI operations."""
with noveum_trace.trace("performance_analysis") as span:
span.set_attribute("analysis.operation_type", operation_data.get("type"))
span.set_attribute("analysis.operation_id", operation_data.get("id"))
# Analyze latency patterns
latency_analysis = self.analyze_latency_patterns(operation_data)
span.set_attribute("analysis.avg_latency", latency_analysis["avg_latency"])
span.set_attribute("analysis.p95_latency", latency_analysis["p95_latency"])
span.set_attribute("analysis.latency_variance", latency_analysis["variance"])
# Analyze resource usage
resource_analysis = self.analyze_resource_usage(operation_data)
span.set_attribute("analysis.peak_memory", resource_analysis["peak_memory"])
span.set_attribute("analysis.avg_cpu", resource_analysis["avg_cpu"])
# Analyze token efficiency
token_analysis = self.analyze_token_efficiency(operation_data)
span.set_attribute("analysis.token_efficiency", token_analysis["efficiency"])
span.set_attribute("analysis.token_waste", token_analysis["waste_percentage"])
# Identify bottlenecks
bottlenecks = self.identify_bottlenecks(
latency_analysis,
resource_analysis,
token_analysis
)
span.set_attribute("analysis.bottleneck_count", len(bottlenecks))
span.set_attribute("analysis.critical_bottlenecks",
len([b for b in bottlenecks if b["severity"] == "critical"]))
# Generate optimization recommendations
recommendations = self.generate_optimization_recommendations(bottlenecks)
span.set_attribute("analysis.recommendations_count", len(recommendations))
return {
"bottlenecks": bottlenecks,
"recommendations": recommendations,
"performance_score": self.calculate_performance_score(
latency_analysis, resource_analysis, token_analysis
)
}
def analyze_latency_patterns(self, operation_data: Dict) -> Dict:
"""Analyze latency patterns and identify slow operations."""
latencies = operation_data.get("latencies", [])
if not latencies:
return {"avg_latency": 0, "p95_latency": 0, "variance": 0}
avg_latency = np.mean(latencies)
p95_latency = np.percentile(latencies, 95)
p99_latency = np.percentile(latencies, 99)
variance = np.var(latencies)
# Identify anomalous latencies
z_scores = np.abs((np.array(latencies) - avg_latency) / np.std(latencies))
anomalous_count = np.sum(z_scores > 2) # More than 2 standard deviations
return {
"avg_latency": avg_latency,
"p95_latency": p95_latency,
"p99_latency": p99_latency,
"variance": variance,
"anomalous_requests": anomalous_count,
"anomaly_percentage": (anomalous_count / len(latencies)) * 100
}
def analyze_resource_usage(self, operation_data: Dict) -> Dict:
"""Analyze memory and CPU usage patterns."""
memory_usage = operation_data.get("memory_usage", [])
cpu_usage = operation_data.get("cpu_usage", [])
return {
"peak_memory": max(memory_usage) if memory_usage else 0,
"avg_memory": np.mean(memory_usage) if memory_usage else 0,
"memory_growth": self.calculate_memory_growth(memory_usage),
"avg_cpu": np.mean(cpu_usage) if cpu_usage else 0,
"peak_cpu": max(cpu_usage) if cpu_usage else 0,
"cpu_variance": np.var(cpu_usage) if cpu_usage else 0
}
def analyze_token_efficiency(self, operation_data: Dict) -> Dict:
"""Analyze token usage efficiency."""
token_data = operation_data.get("token_usage", {})
input_tokens = token_data.get("input_tokens", [])
output_tokens = token_data.get("output_tokens", [])
context_tokens = token_data.get("context_tokens", [])
if not input_tokens:
return {"efficiency": 0, "waste_percentage": 0}
# Calculate efficiency metrics
avg_input = np.mean(input_tokens)
avg_output = np.mean(output_tokens)
avg_context = np.mean(context_tokens) if context_tokens else 0
# Token efficiency = useful tokens / total tokens
useful_tokens = avg_output # Assuming output tokens are "useful"
total_tokens = avg_input + avg_output
efficiency = useful_tokens / total_tokens if total_tokens > 0 else 0
# Calculate waste from oversized context
optimal_context = self.calculate_optimal_context_size(input_tokens, output_tokens)
context_waste = max(0, avg_context - optimal_context) if avg_context > 0 else 0
waste_percentage = (context_waste / total_tokens) * 100 if total_tokens > 0 else 0
return {
"efficiency": efficiency,
"waste_percentage": waste_percentage,
"avg_input_tokens": avg_input,
"avg_output_tokens": avg_output,
"avg_context_tokens": avg_context,
"optimal_context_size": optimal_context
}
def identify_bottlenecks(self, latency_data: Dict, resource_data: Dict, token_data: Dict) -> List[Dict]:
"""Identify performance bottlenecks based on analysis."""
bottlenecks = []
# Latency bottlenecks
if latency_data["avg_latency"] > self.bottleneck_thresholds["llm_latency"]:
bottlenecks.append({
"type": "latency",
"component": "llm_operations",
"severity": "critical" if latency_data["avg_latency"] > 10 else "warning",
"value": latency_data["avg_latency"],
"threshold": self.bottleneck_thresholds["llm_latency"],
"description": f"Average LLM latency ({latency_data['avg_latency']:.2f}s) exceeds threshold"
})
# Memory bottlenecks
if resource_data["peak_memory"] > self.bottleneck_thresholds["memory_usage"]:
bottlenecks.append({
"type": "memory",
"component": "resource_usage",
"severity": "critical" if resource_data["peak_memory"] > 2000 else "warning",
"value": resource_data["peak_memory"],
"threshold": self.bottleneck_thresholds["memory_usage"],
"description": f"Peak memory usage ({resource_data['peak_memory']:.0f}MB) exceeds threshold"
})
# Token efficiency bottlenecks
if token_data["efficiency"] < self.bottleneck_thresholds["token_efficiency"]:
bottlenecks.append({
"type": "token_efficiency",
"component": "llm_usage",
"severity": "warning",
"value": token_data["efficiency"],
"threshold": self.bottleneck_thresholds["token_efficiency"],
"description": f"Token efficiency ({token_data['efficiency']:.2f}) below optimal threshold"
})
# High variance indicates inconsistent performance
if latency_data["variance"] > 5.0:
bottlenecks.append({
"type": "consistency",
"component": "system_stability",
"severity": "warning",
"value": latency_data["variance"],
"threshold": 5.0,
"description": f"High latency variance ({latency_data['variance']:.2f}) indicates inconsistent performance"
})
return bottlenecks
def generate_optimization_recommendations(self, bottlenecks: List[Dict]) -> List[Dict]:
"""Generate specific optimization recommendations based on bottlenecks."""
recommendations = []
for bottleneck in bottlenecks:
if bottleneck["type"] == "latency":
recommendations.extend([
{
"category": "model_optimization",
"action": "Consider using a faster model variant",
"impact": "high",
"implementation_effort": "low",
"description": "Switch to a smaller, faster model for non-critical operations"
},
{
"category": "caching",
"action": "Implement response caching",
"impact": "high",
"implementation_effort": "medium",
"description": "Cache similar requests to avoid redundant LLM calls"
},
{
"category": "batching",
"action": "Implement request batching",
"impact": "medium",
"implementation_effort": "medium",
"description": "Batch multiple requests to improve throughput"
}
])
elif bottleneck["type"] == "memory":
recommendations.extend([
{
"category": "context_optimization",
"action": "Optimize context window usage",
"impact": "high",
"implementation_effort": "medium",
"description": "Reduce context size through summarization or filtering"
},
{
"category": "memory_management",
"action": "Implement memory pooling",
"impact": "medium",
"implementation_effort": "high",
"description": "Use memory pools to reduce allocation overhead"
}
])
elif bottleneck["type"] == "token_efficiency":
recommendations.extend([
{
"category": "prompt_optimization",
"action": "Optimize prompt design",
"impact": "high",
"implementation_effort": "low",
"description": "Reduce prompt length while maintaining effectiveness"
},
{
"category": "context_filtering",
"action": "Implement smart context filtering",
"impact": "medium",
"implementation_effort": "medium",
"description": "Only include relevant context for each query"
}
])
return recommendations
Optimization Implementation Strategies
class OptimizationImplementor:
"""Implement performance optimizations based on tracing insights."""
def __init__(self):
self.optimization_cache = {}
self.performance_baseline = {}
@noveum_trace.trace_optimization(optimization_type="caching")
def implement_intelligent_caching(self, cache_strategy: str = "semantic") -> Dict:
"""Implement intelligent caching based on semantic similarity."""
with noveum_trace.trace("optimization.caching") as span:
span.set_attribute("optimization.strategy", cache_strategy)
span.set_attribute("optimization.cache_size", len(self.optimization_cache))
if cache_strategy == "semantic":
return self.implement_semantic_caching()
elif cache_strategy == "exact_match":
return self.implement_exact_match_caching()
elif cache_strategy == "time_based":
return self.implement_time_based_caching()
def implement_semantic_caching(self) -> Dict:
"""Implement semantic similarity-based caching."""
with noveum_trace.trace("semantic_caching_setup") as span:
# Set up semantic similarity threshold
similarity_threshold = 0.85
span.set_attribute("caching.similarity_threshold", similarity_threshold)
# Initialize embedding model for cache key generation
embedding_model = initialize_embedding_model()
span.set_attribute("caching.embedding_model", embedding_model.model_name)
cache_manager = SemanticCacheManager(
similarity_threshold=similarity_threshold,
embedding_model=embedding_model
)
# Test cache performance
cache_performance = self.test_cache_performance(cache_manager)
span.set_attribute("caching.hit_rate", cache_performance["hit_rate"])
span.set_attribute("caching.avg_lookup_time", cache_performance["avg_lookup_time"])
span.set_attribute("caching.memory_usage", cache_performance["memory_usage"])
return {
"cache_manager": cache_manager,
"performance_metrics": cache_performance,
"optimization_impact": self.calculate_optimization_impact(cache_performance)
}
@noveum_trace.trace_optimization(optimization_type="batching")
def implement_request_batching(self, batch_size: int = 5, timeout_ms: int = 100) -> Dict:
"""Implement request batching for improved throughput."""
with noveum_trace.trace("optimization.batching") as span:
span.set_attribute("batching.batch_size", batch_size)
span.set_attribute("batching.timeout_ms", timeout_ms)
# Set up batching system
batch_processor = RequestBatchProcessor(
batch_size=batch_size,
timeout_ms=timeout_ms
)
# Measure batching efficiency
baseline_performance = self.measure_baseline_performance()
span.set_attribute("batching.baseline_throughput", baseline_performance["throughput"])
# Test batched performance
batched_performance = self.test_batched_performance(batch_processor)
span.set_attribute("batching.batched_throughput", batched_performance["throughput"])
# Calculate improvement
throughput_improvement = (
(batched_performance["throughput"] - baseline_performance["throughput"]) /
baseline_performance["throughput"]
) * 100
span.set_attribute("batching.throughput_improvement_percent", throughput_improvement)
return {
"batch_processor": batch_processor,
"performance_improvement": throughput_improvement,
"cost_savings": self.calculate_batching_cost_savings(
baseline_performance, batched_performance
)
}
@noveum_trace.trace_optimization(optimization_type="context_optimization")
def optimize_context_usage(self, optimization_strategy: str = "smart_truncation") -> Dict:
"""Optimize context window usage for better performance."""
with noveum_trace.trace("optimization.context") as span:
span.set_attribute("context_optimization.strategy", optimization_strategy)
if optimization_strategy == "smart_truncation":
return self.implement_smart_truncation()
elif optimization_strategy == "hierarchical_summarization":
return self.implement_hierarchical_summarization()
elif optimization_strategy == "relevance_filtering":
return self.implement_relevance_filtering()
def implement_smart_truncation(self) -> Dict:
"""Implement smart context truncation based on relevance."""
with noveum_trace.trace("smart_truncation") as span:
# Analyze current context usage patterns
context_analysis = self.analyze_context_patterns()
span.set_attribute("truncation.avg_context_length", context_analysis["avg_length"])
span.set_attribute("truncation.utilization_rate", context_analysis["utilization"])
# Implement relevance-based truncation
truncation_strategy = RelevanceTruncationStrategy(
max_tokens=4000,
relevance_threshold=0.7,
preserve_structure=True
)
# Test truncation effectiveness
truncation_results = self.test_truncation_strategy(truncation_strategy)
span.set_attribute("truncation.token_savings", truncation_results["token_savings"])
span.set_attribute("truncation.quality_retention", truncation_results["quality_retention"])
span.set_attribute("truncation.latency_improvement", truncation_results["latency_improvement"])
return {
"truncation_strategy": truncation_strategy,
"token_savings_percent": truncation_results["token_savings_percent"],
"quality_impact": truncation_results["quality_impact"],
"cost_savings": truncation_results["cost_savings"]
}
class RelevanceTruncationStrategy:
"""Smart truncation based on content relevance."""
def __init__(self, max_tokens: int, relevance_threshold: float, preserve_structure: bool = True):
self.max_tokens = max_tokens
self.relevance_threshold = relevance_threshold
self.preserve_structure = preserve_structure
@noveum_trace.trace_component(component_type="context_processor")
def truncate_context(self, context: str, query: str) -> Dict:
"""Truncate context while preserving relevance."""
with noveum_trace.trace("context_truncation") as span:
span.set_attribute("truncation.original_length", len(context))
span.set_attribute("truncation.max_tokens", self.max_tokens)
span.set_attribute("truncation.query", query[:100]) # First 100 chars
# Split context into segments
segments = self.split_into_segments(context)
span.set_attribute("truncation.segment_count", len(segments))
# Calculate relevance scores for each segment
relevance_scores = self.calculate_relevance_scores(segments, query)
span.set_attribute("truncation.avg_relevance", np.mean(relevance_scores))
# Select most relevant segments within token limit
selected_segments = self.select_relevant_segments(
segments, relevance_scores, self.max_tokens
)
span.set_attribute("truncation.segments_selected", len(selected_segments))
span.set_attribute("truncation.selection_ratio", len(selected_segments) / len(segments))
# Reconstruct context
truncated_context = self.reconstruct_context(selected_segments)
span.set_attribute("truncation.final_length", len(truncated_context))
span.set_attribute("truncation.compression_ratio",
len(truncated_context) / len(context))
return {
"truncated_context": truncated_context,
"original_segments": len(segments),
"selected_segments": len(selected_segments),
"relevance_scores": relevance_scores,
"compression_ratio": len(truncated_context) / len(context)
}
def split_into_segments(self, context: str) -> List[str]:
"""Split context into meaningful segments."""
# Implementation would split by paragraphs, sentences, or semantic chunks
# This is a simplified version
sentences = context.split('. ')
return [sentence.strip() + '.' for sentence in sentences if sentence.strip()]
def calculate_relevance_scores(self, segments: List[str], query: str) -> List[float]:
"""Calculate relevance score for each segment relative to query."""
# In a real implementation, this would use semantic similarity
# This is a simplified version using keyword overlap
query_words = set(query.lower().split())
scores = []
for segment in segments:
segment_words = set(segment.lower().split())
overlap = len(query_words.intersection(segment_words))
score = overlap / max(len(query_words), 1)
scores.append(score)
return scores
def select_relevant_segments(self, segments: List[str], scores: List[float], max_tokens: int) -> List[str]:
"""Select most relevant segments within token limit."""
# Sort segments by relevance score
segment_scores = list(zip(segments, scores))
segment_scores.sort(key=lambda x: x[1], reverse=True)
selected = []
total_tokens = 0
for segment, score in segment_scores:
segment_tokens = len(segment.split()) * 1.3 # Rough token estimation
if score >= self.relevance_threshold and total_tokens + segment_tokens <= max_tokens:
selected.append(segment)
total_tokens += segment_tokens
if total_tokens >= max_tokens:
break
return selected
def reconstruct_context(self, selected_segments: List[str]) -> str:
"""Reconstruct context from selected segments."""
if self.preserve_structure:
# Maintain original order where possible
return ' '.join(selected_segments)
else:
# Order by relevance
return ' '.join(selected_segments)
🚀 Advanced Optimization Techniques
Model Selection Optimization
class ModelOptimizer:
"""Optimize model selection based on performance requirements."""
def __init__(self):
self.model_performance_data = {}
self.cost_performance_matrix = {}
@noveum_trace.trace_optimization(optimization_type="model_selection")
def optimize_model_selection(self, requirements: Dict) -> Dict:
"""Select optimal model based on performance and cost requirements."""
with noveum_trace.trace("model_optimization") as span:
span.set_attribute("optimization.latency_requirement", requirements.get("max_latency"))
span.set_attribute("optimization.quality_requirement", requirements.get("min_quality"))
span.set_attribute("optimization.cost_constraint", requirements.get("max_cost"))
# Analyze current model performance
current_performance = self.analyze_current_model_performance()
span.set_attribute("optimization.current_latency", current_performance["avg_latency"])
span.set_attribute("optimization.current_quality", current_performance["quality_score"])
span.set_attribute("optimization.current_cost", current_performance["cost_per_request"])
# Find optimal models
candidate_models = self.find_candidate_models(requirements)
span.set_attribute("optimization.candidate_count", len(candidate_models))
# Test candidate models
optimization_results = {}
for model in candidate_models:
test_results = self.test_model_performance(model, requirements)
optimization_results[model] = test_results
# Select best model
optimal_model = self.select_optimal_model(optimization_results, requirements)
span.set_attribute("optimization.selected_model", optimal_model)
# Calculate optimization impact
optimization_impact = self.calculate_model_optimization_impact(
current_performance,
optimization_results[optimal_model]
)
for metric, improvement in optimization_impact.items():
span.set_attribute(f"optimization.improvement.{metric}", improvement)
return {
"optimal_model": optimal_model,
"performance_improvement": optimization_impact,
"candidate_results": optimization_results,
"recommendation_confidence": self.calculate_confidence(optimization_results)
}
def analyze_current_model_performance(self) -> Dict:
"""Analyze current model performance metrics."""
with noveum_trace.trace("current_model_analysis") as span:
# Collect performance data from recent traces
recent_traces = self.get_recent_trace_data(hours=24)
if not recent_traces:
return {"avg_latency": 0, "quality_score": 0, "cost_per_request": 0}
latencies = [trace["latency"] for trace in recent_traces]
quality_scores = [trace["quality_score"] for trace in recent_traces if "quality_score" in trace]
token_costs = [trace["token_cost"] for trace in recent_traces if "token_cost" in trace]
performance = {
"avg_latency": np.mean(latencies),
"p95_latency": np.percentile(latencies, 95),
"quality_score": np.mean(quality_scores) if quality_scores else 0,
"cost_per_request": np.mean(token_costs) if token_costs else 0,
"throughput": len(recent_traces) / 24 # requests per hour
}
span.set_attribute("analysis.trace_count", len(recent_traces))
span.set_attribute("analysis.avg_latency", performance["avg_latency"])
span.set_attribute("analysis.quality_score", performance["quality_score"])
return performance
def find_candidate_models(self, requirements: Dict) -> List[str]:
"""Find candidate models that meet basic requirements."""
candidate_models = []
model_catalog = self.get_model_catalog()
for model_name, model_specs in model_catalog.items():
# Check if model meets basic requirements
if (model_specs["max_latency"] <= requirements.get("max_latency", float('inf')) and
model_specs["min_quality"] >= requirements.get("min_quality", 0) and
model_specs["cost_per_token"] <= requirements.get("max_cost_per_token", float('inf'))):
candidate_models.append(model_name)
return candidate_models
def test_model_performance(self, model_name: str, requirements: Dict) -> Dict:
"""Test model performance with sample workload."""
with noveum_trace.trace(f"model_test.{model_name}") as span:
span.set_attribute("test.model_name", model_name)
# Run test queries
test_queries = self.get_test_queries()
results = []
for query in test_queries:
start_time = time.time()
try:
response = self.execute_test_query(model_name, query)
latency = time.time() - start_time
# Calculate quality score
quality_score = self.calculate_quality_score(query, response)
# Calculate cost
cost = self.calculate_query_cost(model_name, query, response)
results.append({
"latency": latency,
"quality_score": quality_score,
"cost": cost,
"success": True
})
except Exception as e:
results.append({
"latency": time.time() - start_time,
"quality_score": 0,
"cost": 0,
"success": False,
"error": str(e)
})
# Aggregate results
successful_results = [r for r in results if r["success"]]
if successful_results:
performance = {
"avg_latency": np.mean([r["latency"] for r in successful_results]),
"p95_latency": np.percentile([r["latency"] for r in successful_results], 95),
"avg_quality": np.mean([r["quality_score"] for r in successful_results]),
"avg_cost": np.mean([r["cost"] for r in successful_results]),
"success_rate": len(successful_results) / len(results),
"total_tests": len(results)
}
else:
performance = {
"avg_latency": float('inf'),
"p95_latency": float('inf'),
"avg_quality": 0,
"avg_cost": float('inf'),
"success_rate": 0,
"total_tests": len(results)
}
# Log performance metrics
for metric, value in performance.items():
span.set_attribute(f"test.{metric}", value)
return performance
Resource Usage Optimization
class ResourceOptimizer:
"""Optimize resource usage based on tracing insights."""
@noveum_trace.trace_optimization(optimization_type="resource_usage")
def optimize_resource_allocation(self, workload_profile: Dict) -> Dict:
"""Optimize resource allocation based on workload characteristics."""
with noveum_trace.trace("resource_optimization") as span:
span.set_attribute("optimization.workload_type", workload_profile.get("type"))
span.set_attribute("optimization.peak_qps", workload_profile.get("peak_qps"))
span.set_attribute("optimization.avg_request_size", workload_profile.get("avg_request_size"))
# Analyze memory usage patterns
memory_optimization = self.optimize_memory_usage(workload_profile)
# Analyze CPU usage patterns
cpu_optimization = self.optimize_cpu_usage(workload_profile)
# Optimize connection pooling
connection_optimization = self.optimize_connection_pooling(workload_profile)
# Calculate overall resource savings
total_savings = self.calculate_total_resource_savings(
memory_optimization,
cpu_optimization,
connection_optimization
)
span.set_attribute("optimization.memory_savings_percent", memory_optimization["savings_percent"])
span.set_attribute("optimization.cpu_savings_percent", cpu_optimization["savings_percent"])
span.set_attribute("optimization.total_cost_savings", total_savings["cost_savings"])
return {
"memory_optimization": memory_optimization,
"cpu_optimization": cpu_optimization,
"connection_optimization": connection_optimization,
"total_savings": total_savings,
"implementation_plan": self.generate_implementation_plan(
memory_optimization, cpu_optimization, connection_optimization
)
}
def optimize_memory_usage(self, workload_profile: Dict) -> Dict:
"""Optimize memory usage patterns."""
with noveum_trace.trace("memory_optimization") as span:
# Analyze current memory patterns
memory_analysis = self.analyze_memory_patterns(workload_profile)
# Identify memory waste
memory_waste = self.identify_memory_waste(memory_analysis)
span.set_attribute("memory.waste_sources", len(memory_waste))
# Generate memory optimization strategies
optimization_strategies = []
if memory_waste.get("context_bloat", 0) > 0.2: # 20% waste
optimization_strategies.append({
"strategy": "context_compression",
"potential_savings": memory_waste["context_bloat"] * 100,
"implementation_effort": "medium",
"description": "Implement context compression to reduce memory footprint"
})
if memory_waste.get("cache_inefficiency", 0) > 0.15: # 15% waste
optimization_strategies.append({
"strategy": "cache_optimization",
"potential_savings": memory_waste["cache_inefficiency"] * 100,
"implementation_effort": "low",
"description": "Optimize cache eviction policies and size limits"
})
# Calculate total potential savings
total_savings = sum(strategy["potential_savings"] for strategy in optimization_strategies)
span.set_attribute("memory.optimization_strategies", len(optimization_strategies))
span.set_attribute("memory.potential_savings", total_savings)
return {
"current_usage": memory_analysis,
"waste_analysis": memory_waste,
"optimization_strategies": optimization_strategies,
"savings_percent": total_savings,
"implementation_priority": self.prioritize_memory_optimizations(optimization_strategies)
}
# Automated Performance Monitoring
class AutomatedPerformanceMonitor:
"""Continuously monitor and optimize performance."""
def __init__(self):
self.performance_baselines = {}
self.optimization_triggers = {}
self.auto_optimization_enabled = True
@noveum_trace.trace_monitoring(monitor_type="automated_performance")
def setup_automated_monitoring(self, monitoring_config: Dict) -> Dict:
"""Set up automated performance monitoring and optimization."""
with noveum_trace.trace("automated_monitoring_setup") as span:
span.set_attribute("monitoring.auto_optimization", self.auto_optimization_enabled)
span.set_attribute("monitoring.check_interval", monitoring_config.get("check_interval"))
# Set up performance thresholds
self.setup_performance_thresholds(monitoring_config.get("thresholds", {}))
# Set up automated triggers
self.setup_optimization_triggers(monitoring_config.get("triggers", {}))
# Set up alerting
alerting_config = self.setup_performance_alerting(monitoring_config.get("alerting", {}))
span.set_attribute("monitoring.thresholds_configured", len(self.performance_baselines))
span.set_attribute("monitoring.triggers_configured", len(self.optimization_triggers))
return {
"monitoring_active": True,
"thresholds": self.performance_baselines,
"triggers": self.optimization_triggers,
"alerting": alerting_config
}
def setup_performance_thresholds(self, thresholds: Dict):
"""Set up performance monitoring thresholds."""
default_thresholds = {
"latency_p95": 5.0, # 5 seconds
"latency_p99": 10.0, # 10 seconds
"error_rate": 0.01, # 1%
"token_efficiency": 0.7, # 70%
"cost_per_request": 0.05, # $0.05
"memory_usage": 1000, # 1GB
"cpu_usage": 80 # 80%
}
self.performance_baselines = {**default_thresholds, **thresholds}
def setup_optimization_triggers(self, triggers: Dict):
"""Set up automated optimization triggers."""
default_triggers = {
"latency_degradation": {
"threshold": 1.5, # 50% increase from baseline
"action": "enable_caching",
"cooldown": 3600 # 1 hour
},
"cost_spike": {
"threshold": 1.3, # 30% increase from baseline
"action": "optimize_context",
"cooldown": 1800 # 30 minutes
},
"memory_pressure": {
"threshold": 0.9, # 90% of available memory
"action": "trigger_gc",
"cooldown": 300 # 5 minutes
}
}
self.optimization_triggers = {**default_triggers, **triggers}
@noveum_trace.trace_monitoring(monitor_type="performance_check")
def perform_automated_performance_check(self) -> Dict:
"""Perform automated performance check and trigger optimizations."""
with noveum_trace.trace("automated_performance_check") as span:
# Collect current performance metrics
current_metrics = self.collect_current_metrics()
# Compare against baselines
performance_analysis = self.analyze_performance_against_baselines(current_metrics)
# Check for optimization triggers
triggered_optimizations = self.check_optimization_triggers(performance_analysis)
span.set_attribute("check.metrics_collected", len(current_metrics))
span.set_attribute("check.threshold_violations", len(performance_analysis["violations"]))
span.set_attribute("check.optimizations_triggered", len(triggered_optimizations))
# Execute triggered optimizations
if self.auto_optimization_enabled and triggered_optimizations:
optimization_results = self.execute_triggered_optimizations(triggered_optimizations)
span.set_attribute("check.optimizations_executed", len(optimization_results))
else:
optimization_results = []
return {
"current_metrics": current_metrics,
"performance_analysis": performance_analysis,
"triggered_optimizations": triggered_optimizations,
"optimization_results": optimization_results,
"recommendations": self.generate_manual_recommendations(performance_analysis)
}
🎯 Performance Optimization Best Practices
1. Establish Performance Baselines
# Always establish baselines before optimization
@noveum_trace.trace_baseline(baseline_type="performance")
def establish_performance_baseline():
"""Establish performance baselines for optimization comparison."""
baseline_metrics = {
"latency_percentiles": measure_latency_percentiles(),
"throughput": measure_throughput(),
"resource_usage": measure_resource_usage(),
"cost_metrics": measure_cost_metrics(),
"quality_scores": measure_quality_scores()
}
return baseline_metrics
2. Implement Gradual Optimization
# Implement optimizations gradually with A/B testing
@noveum_trace.trace_experiment(experiment_type="optimization_ab_test")
def gradual_optimization_rollout(optimization_config: Dict):
"""Gradually roll out optimizations with monitoring."""
# Start with small traffic percentage
traffic_percentages = [5, 10, 25, 50, 100]
for percentage in traffic_percentages:
results = test_optimization_with_traffic(optimization_config, percentage)
if results["performance_improvement"] > 0 and results["error_rate"] < 0.01:
continue # Proceed to next percentage
else:
rollback_optimization()
break
3. Monitor Optimization Impact
# Always monitor the impact of optimizations
@noveum_trace.trace_optimization_impact(optimization_id="context_optimization_v1")
def monitor_optimization_impact(optimization_id: str, duration_hours: int = 24):
"""Monitor the impact of applied optimizations."""
# Collect post-optimization metrics
post_optimization_metrics = collect_metrics_for_period(duration_hours)
# Compare with baseline
impact_analysis = compare_with_baseline(post_optimization_metrics)
# Generate impact report
return generate_optimization_impact_report(impact_analysis)
Performance optimization for AI applications requires a systematic approach combining detailed tracing insights, strategic implementation, and continuous monitoring. By leveraging Noveum.ai's comprehensive tracing data, you can identify bottlenecks, implement targeted optimizations, and achieve significant improvements in latency, cost, and resource efficiency.
🔗 Next Steps
- Multi-Agent Tracing - Observe agent workflows
- RAG Pipeline Observability - Monitor retrieval and generation systems
- Custom Instrumentation - Add domain-specific tracing
Get Early Access to Noveum.ai Platform
Be the first one to get notified when we open Noveum Platform to more users. All users get access to Observability suite for free, early users get free eval jobs and premium support for the first year.