RAG Pipeline Observability
Monitor retrieval, generation, and context handling in RAG systems with comprehensive tracing
Retrieval-Augmented Generation (RAG) systems combine the power of information retrieval with large language models to provide accurate, contextual responses. Monitoring these complex pipelines requires specialized observability to understand retrieval quality, context relevance, and generation effectiveness.
🎯 Why RAG Observability Matters
RAG systems introduce unique challenges that traditional monitoring can't address:
- Retrieval Quality: Are you finding the most relevant documents?
- Context Utilization: How effectively is retrieved context being used?
- Generation Fidelity: Is the LLM accurately using the provided context?
- Pipeline Performance: Where are the bottlenecks in your RAG pipeline?
- Cost Optimization: Which components consume the most resources?
🏗️ RAG Pipeline Architecture
Core RAG Components
Noveum.ai can trace each stage of your RAG pipeline:
import noveum_trace
@noveum_trace.trace_rag_pipeline(name="document_qa_pipeline")
def document_qa_rag_pipeline(question: str, collection_id: str) -> Dict[str, Any]:
"""Complete RAG pipeline with comprehensive tracing."""
# Stage 1: Query Processing and Enhancement
processed_query = trace_query_processing(question)
# Stage 2: Document Retrieval
retrieved_docs = trace_document_retrieval(processed_query, collection_id)
# Stage 3: Context Preparation
context = trace_context_preparation(retrieved_docs, processed_query)
# Stage 4: Generation
response = trace_llm_generation(processed_query, context)
# Stage 5: Post-processing
final_response = trace_response_postprocessing(response, question)
return final_response
def trace_query_processing(question: str) -> Dict[str, Any]:
"""Trace query enhancement and processing."""
with noveum_trace.trace("rag.query_processing") as span:
span.set_attribute("query.original", question)
span.set_attribute("query.length", len(question))
# Query enhancement
enhanced_query = enhance_query(question)
span.set_attribute("query.enhanced", enhanced_query)
span.set_attribute("query.enhancement_applied", enhanced_query != question)
# Query classification
query_type = classify_query(enhanced_query)
span.set_attribute("query.type", query_type)
span.set_attribute("query.complexity", calculate_query_complexity(enhanced_query))
return {
"original": question,
"enhanced": enhanced_query,
"type": query_type,
"complexity": calculate_query_complexity(enhanced_query)
}
TypeScript RAG Implementation
import { trace, addAttribute } from '@noveum/trace';
class RAGPipeline {
async processQuery(question: string, collectionId: string): Promise<RAGResponse> {
return await trace('rag-pipeline', async () => {
addAttribute('rag.pipeline_version', '2.1.0');
addAttribute('rag.question', question);
addAttribute('rag.collection_id', collectionId);
// Trace each stage of the RAG pipeline
const queryEmbedding = await this.traceQueryEmbedding(question);
const retrievedDocs = await this.traceDocumentRetrieval(queryEmbedding, collectionId);
const contextualizedResponse = await this.traceGeneration(question, retrievedDocs);
return contextualizedResponse;
});
}
private async traceQueryEmbedding(question: string): Promise<number[]> {
return await trace('rag.query_embedding', async () => {
addAttribute('embedding.model', 'text-embedding-ada-002');
addAttribute('embedding.input_length', question.length);
const embedding = await this.embeddingModel.embed(question);
addAttribute('embedding.dimensions', embedding.length);
addAttribute('embedding.norm', this.calculateVectorNorm(embedding));
return embedding;
});
}
private async traceDocumentRetrieval(
queryEmbedding: number[],
collectionId: string
): Promise<Document[]> {
return await trace('rag.document_retrieval', async () => {
addAttribute('retrieval.collection_id', collectionId);
addAttribute('retrieval.query_embedding_dimensions', queryEmbedding.length);
addAttribute('retrieval.search_method', 'semantic_similarity');
const results = await this.vectorDB.search({
embedding: queryEmbedding,
collection: collectionId,
topK: 5,
threshold: 0.7
});
addAttribute('retrieval.results_count', results.length);
addAttribute('retrieval.avg_similarity_score',
results.reduce((sum, r) => sum + r.score, 0) / results.length);
addAttribute('retrieval.min_similarity_score', Math.min(...results.map(r => r.score)));
addAttribute('retrieval.max_similarity_score', Math.max(...results.map(r => r.score)));
return results;
});
}
}
📊 Tracing Retrieval Components
Vector Database Operations
@noveum_trace.trace_component(component_type="vector_db")
def trace_vector_search(query_embedding: List[float], collection: str, top_k: int = 5) -> List[Dict]:
"""Trace vector database search operations."""
with noveum_trace.trace("vector_db.search") as span:
span.set_attribute("vector_db.collection", collection)
span.set_attribute("vector_db.query_dimensions", len(query_embedding))
span.set_attribute("vector_db.top_k", top_k)
span.set_attribute("vector_db.search_algorithm", "cosine_similarity")
# Execute search
start_time = time.time()
results = execute_vector_search(query_embedding, collection, top_k)
search_duration = time.time() - start_time
# Track search performance
span.set_attribute("vector_db.search_duration", search_duration)
span.set_attribute("vector_db.results_returned", len(results))
if results:
similarities = [r["similarity"] for r in results]
span.set_attribute("vector_db.avg_similarity", np.mean(similarities))
span.set_attribute("vector_db.max_similarity", max(similarities))
span.set_attribute("vector_db.min_similarity", min(similarities))
span.set_attribute("vector_db.similarity_variance", np.var(similarities))
# Quality metrics
span.set_attribute("vector_db.search_quality", calculate_search_quality(results))
return results
def calculate_search_quality(results: List[Dict]) -> str:
"""Calculate search quality based on similarity scores."""
if not results:
return "no_results"
avg_similarity = np.mean([r["similarity"] for r in results])
if avg_similarity > 0.8:
return "excellent"
elif avg_similarity > 0.6:
return "good"
elif avg_similarity > 0.4:
return "fair"
else:
return "poor"
Document Ranking and Reranking
@noveum_trace.trace_component(component_type="reranker")
def trace_document_reranking(query: str, initial_results: List[Dict]) -> List[Dict]:
"""Trace document reranking for improved relevance."""
with noveum_trace.trace("rag.reranking") as span:
span.set_attribute("reranking.input_count", len(initial_results))
span.set_attribute("reranking.query", query)
span.set_attribute("reranking.model", "cross-encoder-reranker")
# Calculate initial ranking scores
initial_scores = [doc["similarity"] for doc in initial_results]
span.set_attribute("reranking.initial_avg_score", np.mean(initial_scores))
# Apply reranking
reranked_results = apply_cross_encoder_reranking(query, initial_results)
# Track reranking impact
reranked_scores = [doc["rerank_score"] for doc in reranked_results]
span.set_attribute("reranking.final_avg_score", np.mean(reranked_scores))
span.set_attribute("reranking.score_improvement", np.mean(reranked_scores) - np.mean(initial_scores))
# Calculate ranking changes
rank_changes = calculate_rank_changes(initial_results, reranked_results)
span.set_attribute("reranking.rank_changes", rank_changes)
span.set_attribute("reranking.stability", calculate_ranking_stability(rank_changes))
return reranked_results
def calculate_rank_changes(initial: List[Dict], reranked: List[Dict]) -> int:
"""Calculate how much ranking order changed."""
initial_ids = [doc["id"] for doc in initial]
reranked_ids = [doc["id"] for doc in reranked]
changes = 0
for i, doc_id in enumerate(reranked_ids):
original_rank = initial_ids.index(doc_id)
if original_rank != i:
changes += abs(original_rank - i)
return changes
Context Window Management
@noveum_trace.trace_component(component_type="context_manager")
def trace_context_preparation(documents: List[Dict], query: str, max_tokens: int = 4000) -> Dict:
"""Trace context preparation and optimization."""
with noveum_trace.trace("rag.context_preparation") as span:
span.set_attribute("context.input_documents", len(documents))
span.set_attribute("context.max_tokens", max_tokens)
span.set_attribute("context.query", query)
# Calculate token usage for each document
document_tokens = []
total_raw_tokens = 0
for doc in documents:
tokens = count_tokens(doc["content"])
document_tokens.append(tokens)
total_raw_tokens += tokens
span.set_attribute("context.total_raw_tokens", total_raw_tokens)
span.set_attribute("context.avg_document_tokens", np.mean(document_tokens))
# Optimize context if needed
if total_raw_tokens > max_tokens:
span.set_attribute("context.optimization_required", True)
optimized_context = optimize_context(documents, query, max_tokens)
span.set_attribute("context.optimization_method", optimized_context["method"])
span.set_attribute("context.documents_included", optimized_context["documents_used"])
span.set_attribute("context.final_tokens", optimized_context["token_count"])
span.set_attribute("context.token_efficiency", optimized_context["token_count"] / total_raw_tokens)
else:
span.set_attribute("context.optimization_required", False)
optimized_context = {
"content": "\n\n".join([doc["content"] for doc in documents]),
"documents_used": len(documents),
"token_count": total_raw_tokens,
"method": "no_optimization"
}
# Calculate context quality metrics
context_quality = calculate_context_quality(optimized_context["content"], query)
span.set_attribute("context.quality_score", context_quality["score"])
span.set_attribute("context.relevance_score", context_quality["relevance"])
span.set_attribute("context.coverage_score", context_quality["coverage"])
return optimized_context
def optimize_context(documents: List[Dict], query: str, max_tokens: int) -> Dict:
"""Optimize context to fit within token limits."""
# Strategy 1: Truncate documents
if len(documents) <= 3:
return truncate_documents_strategy(documents, max_tokens)
# Strategy 2: Select most relevant documents
return select_top_documents_strategy(documents, query, max_tokens)
def calculate_context_quality(content: str, query: str) -> Dict[str, float]:
"""Calculate quality metrics for the prepared context."""
# Relevance: How well does context match the query
relevance_score = calculate_relevance_score(content, query)
# Coverage: How comprehensive is the context
coverage_score = calculate_coverage_score(content, query)
# Overall quality
quality_score = (relevance_score * 0.7) + (coverage_score * 0.3)
return {
"score": quality_score,
"relevance": relevance_score,
"coverage": coverage_score
}
🤖 Tracing LLM Generation
Context-Aware Generation
@noveum_trace.trace_llm(provider="openai", model="gpt-4")
def trace_rag_generation(query: str, context: str, system_prompt: str = None) -> Dict:
"""Trace LLM generation with RAG context."""
with noveum_trace.trace("rag.generation") as span:
span.set_attribute("generation.query", query)
span.set_attribute("generation.context_length", len(context))
span.set_attribute("generation.context_token_count", count_tokens(context))
# Prepare the prompt
if system_prompt is None:
system_prompt = "Answer the question based only on the provided context. If the context doesn't contain enough information, say so."
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": f"Context:\n{context}\n\nQuestion: {query}"}
]
total_input_tokens = sum(count_tokens(msg["content"]) for msg in messages)
span.set_attribute("generation.input_tokens", total_input_tokens)
# Call LLM
response = call_llm(messages)
# Track generation metrics
span.set_attribute("generation.output_tokens", count_tokens(response["content"]))
span.set_attribute("generation.total_tokens", total_input_tokens + count_tokens(response["content"]))
# Analyze response quality
quality_metrics = analyze_rag_response_quality(query, context, response["content"])
span.set_attribute("generation.context_utilization", quality_metrics["context_utilization"])
span.set_attribute("generation.answer_completeness", quality_metrics["completeness"])
span.set_attribute("generation.factual_accuracy", quality_metrics["accuracy"])
span.set_attribute("generation.hallucination_risk", quality_metrics["hallucination_risk"])
return {
"response": response["content"],
"usage": {
"input_tokens": total_input_tokens,
"output_tokens": count_tokens(response["content"]),
"total_tokens": total_input_tokens + count_tokens(response["content"])
},
"quality_metrics": quality_metrics
}
def analyze_rag_response_quality(query: str, context: str, response: str) -> Dict[str, float]:
"""Analyze the quality of RAG-generated responses."""
# Context utilization: How much of the context was used
context_utilization = calculate_context_utilization(context, response)
# Answer completeness: How well does the response answer the query
completeness = calculate_answer_completeness(query, response)
# Factual accuracy: How accurate is the response based on context
accuracy = calculate_factual_accuracy(context, response)
# Hallucination risk: Likelihood of information not in context
hallucination_risk = calculate_hallucination_risk(context, response)
return {
"context_utilization": context_utilization,
"completeness": completeness,
"accuracy": accuracy,
"hallucination_risk": hallucination_risk
}
Response Evaluation and Feedback
@noveum_trace.trace_component(component_type="response_evaluator")
def trace_response_evaluation(query: str, context: str, response: str, ground_truth: str = None) -> Dict:
"""Trace comprehensive response evaluation."""
with noveum_trace.trace("rag.response_evaluation") as span:
span.set_attribute("evaluation.has_ground_truth", ground_truth is not None)
span.set_attribute("evaluation.response_length", len(response))
# Automatic evaluation metrics
auto_metrics = calculate_automatic_metrics(query, context, response)
for metric_name, value in auto_metrics.items():
span.set_attribute(f"evaluation.auto.{metric_name}", value)
# Ground truth evaluation if available
if ground_truth:
ground_truth_metrics = calculate_ground_truth_metrics(response, ground_truth)
for metric_name, value in ground_truth_metrics.items():
span.set_attribute(f"evaluation.ground_truth.{metric_name}", value)
# Overall evaluation score
overall_score = calculate_overall_evaluation_score(auto_metrics, ground_truth_metrics if ground_truth else None)
span.set_attribute("evaluation.overall_score", overall_score)
# Classification
if overall_score > 0.8:
evaluation_class = "excellent"
elif overall_score > 0.6:
evaluation_class = "good"
elif overall_score > 0.4:
evaluation_class = "fair"
else:
evaluation_class = "poor"
span.set_attribute("evaluation.classification", evaluation_class)
return {
"automatic_metrics": auto_metrics,
"ground_truth_metrics": ground_truth_metrics if ground_truth else None,
"overall_score": overall_score,
"classification": evaluation_class
}
def calculate_automatic_metrics(query: str, context: str, response: str) -> Dict[str, float]:
"""Calculate automatic evaluation metrics without ground truth."""
return {
"relevance_to_query": calculate_semantic_similarity(query, response),
"context_fidelity": calculate_context_fidelity(context, response),
"answer_completeness": calculate_answer_completeness_score(query, response),
"coherence": calculate_coherence_score(response),
"conciseness": calculate_conciseness_score(response),
"hallucination_score": calculate_hallucination_score(context, response)
}
def calculate_ground_truth_metrics(response: str, ground_truth: str) -> Dict[str, float]:
"""Calculate metrics comparing response to ground truth."""
return {
"bleu_score": calculate_bleu_score(response, ground_truth),
"rouge_l": calculate_rouge_l_score(response, ground_truth),
"semantic_similarity": calculate_semantic_similarity(response, ground_truth),
"factual_correctness": calculate_factual_correctness(response, ground_truth),
"information_coverage": calculate_information_coverage(response, ground_truth)
}
📈 RAG Pipeline Performance Analysis
End-to-End Pipeline Metrics
@noveum_trace.trace_workflow(name="rag_pipeline_performance")
def trace_rag_pipeline_performance(questions: List[str], collection_id: str) -> Dict:
"""Trace performance metrics across multiple RAG queries."""
with noveum_trace.trace("rag.pipeline_performance") as span:
span.set_attribute("performance.question_count", len(questions))
span.set_attribute("performance.collection_id", collection_id)
pipeline_metrics = {
"total_queries": len(questions),
"successful_queries": 0,
"failed_queries": 0,
"avg_latency": 0,
"avg_retrieval_time": 0,
"avg_generation_time": 0,
"avg_quality_score": 0,
"cost_metrics": {
"total_embedding_cost": 0,
"total_generation_cost": 0,
"total_cost": 0
}
}
latencies = []
quality_scores = []
retrieval_times = []
generation_times = []
for i, question in enumerate(questions):
try:
start_time = time.time()
# Execute RAG pipeline with detailed timing
result = execute_rag_pipeline_with_timing(question, collection_id)
total_latency = time.time() - start_time
latencies.append(total_latency)
retrieval_times.append(result["timings"]["retrieval_time"])
generation_times.append(result["timings"]["generation_time"])
quality_scores.append(result["quality_score"])
# Track costs
pipeline_metrics["cost_metrics"]["total_embedding_cost"] += result["costs"]["embedding_cost"]
pipeline_metrics["cost_metrics"]["total_generation_cost"] += result["costs"]["generation_cost"]
pipeline_metrics["successful_queries"] += 1
except Exception as e:
pipeline_metrics["failed_queries"] += 1
span.add_event(f"query_failed", {"question_index": i, "error": str(e)})
# Calculate aggregate metrics
if latencies:
pipeline_metrics["avg_latency"] = np.mean(latencies)
pipeline_metrics["p95_latency"] = np.percentile(latencies, 95)
pipeline_metrics["p99_latency"] = np.percentile(latencies, 99)
if retrieval_times:
pipeline_metrics["avg_retrieval_time"] = np.mean(retrieval_times)
if generation_times:
pipeline_metrics["avg_generation_time"] = np.mean(generation_times)
if quality_scores:
pipeline_metrics["avg_quality_score"] = np.mean(quality_scores)
pipeline_metrics["min_quality_score"] = min(quality_scores)
pipeline_metrics["max_quality_score"] = max(quality_scores)
pipeline_metrics["cost_metrics"]["total_cost"] = (
pipeline_metrics["cost_metrics"]["total_embedding_cost"] +
pipeline_metrics["cost_metrics"]["total_generation_cost"]
)
# Set span attributes
for key, value in pipeline_metrics.items():
if isinstance(value, dict):
for subkey, subvalue in value.items():
span.set_attribute(f"performance.{key}.{subkey}", subvalue)
else:
span.set_attribute(f"performance.{key}", value)
return pipeline_metrics
Cost and Resource Tracking
@noveum_trace.trace_component(component_type="cost_tracker")
def trace_rag_costs(operation_type: str, tokens_used: int, model: str) -> Dict:
"""Track costs for RAG operations."""
with noveum_trace.trace("rag.cost_tracking") as span:
span.set_attribute("cost.operation_type", operation_type)
span.set_attribute("cost.tokens_used", tokens_used)
span.set_attribute("cost.model", model)
# Calculate costs based on model and operation
cost_per_token = get_model_cost_per_token(model, operation_type)
total_cost = tokens_used * cost_per_token
span.set_attribute("cost.cost_per_token", cost_per_token)
span.set_attribute("cost.total_cost", total_cost)
span.set_attribute("cost.currency", "USD")
# Track cumulative costs
daily_cost = get_daily_cumulative_cost()
span.set_attribute("cost.daily_cumulative", daily_cost)
# Cost efficiency metrics
if operation_type == "generation":
cost_per_word = total_cost / (tokens_used / 4) # Rough token-to-word conversion
span.set_attribute("cost.cost_per_word", cost_per_word)
return {
"operation_type": operation_type,
"tokens_used": tokens_used,
"total_cost": total_cost,
"daily_cumulative": daily_cost
}
def get_model_cost_per_token(model: str, operation_type: str) -> float:
"""Get cost per token for specific model and operation."""
cost_mapping = {
"text-embedding-ada-002": {"embedding": 0.0000001},
"gpt-4": {"generation": 0.00003},
"gpt-3.5-turbo": {"generation": 0.000002},
"claude-3-opus": {"generation": 0.000015},
"claude-3-sonnet": {"generation": 0.000003}
}
return cost_mapping.get(model, {}).get(operation_type, 0.0)
🔧 Best Practices for RAG Observability
1. Comprehensive Pipeline Tracing
# Trace every component of your RAG pipeline
@noveum_trace.trace_rag_pipeline(name="comprehensive_rag")
def comprehensive_rag_pipeline(query: str) -> Dict:
# Always trace query preprocessing
processed_query = trace_query_processing(query)
# Always trace retrieval with quality metrics
retrieved_docs = trace_retrieval_with_quality(processed_query)
# Always trace context preparation
context = trace_context_preparation(retrieved_docs, processed_query)
# Always trace generation with quality analysis
response = trace_generation_with_analysis(processed_query, context)
# Always trace post-processing
final_response = trace_post_processing(response)
return final_response
2. Quality Monitoring
# Monitor quality metrics for continuous improvement
def setup_rag_quality_monitoring():
noveum_trace.configure_quality_alerts({
"retrieval_quality": {
"metric": "avg_similarity_score",
"threshold": 0.6,
"window": "1h",
"action": "alert"
},
"generation_quality": {
"metric": "context_utilization",
"threshold": 0.7,
"window": "1h",
"action": "alert"
},
"hallucination_risk": {
"metric": "hallucination_score",
"threshold": 0.3,
"window": "30m",
"action": "alert"
}
})
3. A/B Testing for RAG Components
@noveum_trace.trace_experiment(experiment_name="retrieval_strategies")
def compare_retrieval_strategies(query: str, collection_id: str) -> Dict:
"""Compare different retrieval strategies."""
# Strategy A: Pure vector similarity
results_a = trace_retrieval_strategy(query, collection_id, "vector_similarity")
# Strategy B: Hybrid search (vector + keyword)
results_b = trace_retrieval_strategy(query, collection_id, "hybrid_search")
# Strategy C: Reranked results
results_c = trace_retrieval_strategy(query, collection_id, "reranked")
# Compare strategies
comparison = compare_strategies([results_a, results_b, results_c])
return comparison
def trace_retrieval_strategy(query: str, collection_id: str, strategy: str) -> Dict:
"""Trace a specific retrieval strategy."""
with noveum_trace.trace(f"retrieval.strategy.{strategy}") as span:
span.set_attribute("strategy.name", strategy)
span.set_attribute("strategy.query", query)
# Execute strategy
results = execute_strategy(query, collection_id, strategy)
# Track strategy-specific metrics
span.set_attribute("strategy.results_count", len(results))
span.set_attribute("strategy.avg_score", np.mean([r["score"] for r in results]))
return results
🎯 Advanced RAG Patterns
Multi-Modal RAG
@noveum_trace.trace_rag_pipeline(name="multimodal_rag")
def multimodal_rag_pipeline(query: str, content_types: List[str]) -> Dict:
"""RAG pipeline that handles multiple content types (text, images, documents)."""
with noveum_trace.trace("multimodal_coordination") as span:
span.set_attribute("multimodal.content_types", content_types)
span.set_attribute("multimodal.query", query)
# Process different content types
results_by_type = {}
for content_type in content_types:
with noveum_trace.trace(f"multimodal.{content_type}") as type_span:
type_span.set_attribute("content_type", content_type)
if content_type == "text":
results = trace_text_retrieval(query)
elif content_type == "image":
results = trace_image_retrieval(query)
elif content_type == "document":
results = trace_document_retrieval(query)
results_by_type[content_type] = results
type_span.set_attribute("results_count", len(results))
# Merge multimodal results
merged_context = merge_multimodal_context(results_by_type)
# Generate response considering all modalities
response = trace_multimodal_generation(query, merged_context)
return response
Conversational RAG
@noveum_trace.trace_rag_pipeline(name="conversational_rag")
def conversational_rag_pipeline(current_query: str, conversation_history: List[Dict]) -> Dict:
"""RAG pipeline that maintains conversation context."""
with noveum_trace.trace("conversational_rag") as span:
span.set_attribute("conversation.current_query", current_query)
span.set_attribute("conversation.history_length", len(conversation_history))
# Extract conversation context
conversation_context = extract_conversation_context(conversation_history)
span.set_attribute("conversation.context_extracted", bool(conversation_context))
# Enhance query with conversation context
enhanced_query = enhance_query_with_context(current_query, conversation_context)
span.set_attribute("conversation.query_enhanced", enhanced_query != current_query)
# Retrieve with conversation-aware strategy
retrieved_docs = trace_conversational_retrieval(enhanced_query, conversation_context)
# Generate response maintaining conversation flow
response = trace_conversational_generation(
current_query,
retrieved_docs,
conversation_history
)
return response
def trace_conversational_retrieval(query: str, conversation_context: Dict) -> List[Dict]:
"""Retrieve documents considering conversation context."""
with noveum_trace.trace("conversational.retrieval") as span:
span.set_attribute("retrieval.has_conversation_context", bool(conversation_context))
# Weight recent conversation topics higher
context_weights = calculate_conversation_weights(conversation_context)
span.set_attribute("retrieval.context_weights", len(context_weights))
# Execute context-aware retrieval
results = execute_contextual_retrieval(query, context_weights)
span.set_attribute("retrieval.results_count", len(results))
return results
RAG observability with Noveum.ai provides the deep insights needed to build, optimize, and scale retrieval-augmented generation systems. By implementing comprehensive tracing across retrieval, context preparation, and generation stages, you can ensure your RAG pipeline delivers accurate, relevant, and cost-effective responses.
🔗 Next Steps
- Custom Instrumentation - Add domain-specific tracing
- Multi-Agent Tracing - Observe agent workflows
- Performance Optimization - Optimize based on tracing insights
Get Early Access to Noveum.ai Platform
Be the first one to get notified when we open Noveum Platform to more users. All users get access to Observability suite for free, early users get free eval jobs and premium support for the first year.